Electrocatalytic activity of Ni-doped nanoporous carbons in the electrooxidation of propargyl alcohol

نویسندگان

  • Leticia García-Cruz
  • Alfonso Sáez
  • Conchi O. Ania
  • José Solla-Gullón
  • Thies Thiemann
  • Jesús Iniesta
  • Vicente Montiel
چکیده

Herein, we explore the immobilization of nickel on various carbon supports and their application as electrocatalysts for the oxidation of propargyl alcohol in alkaline medium. In comparison with massive and nanoparticulated nickel electrode systems, Ni-doped nanoporous carbons provided similar propargyl alcohol conversions for very low metallic contents. Nanoparticulated Ni on various carbon supports gave rise to the highest electrocatalytic activity in terms of product selectivity, with a clear dependence on Ni content. The results point to the importance of controlling the dispersion of the Ni phase within the carbon matrix for a full exploitation of the electroactive area of the metal. Additionally, a change in the mechanism of the propargyl alcohol electrooxidation was noted, which seems to be related to the physicochemical properties of the carbon support as well. Thus, the stereoselectivity of the electrooxidative reaction can be controlled by the active nickel content immobilized on the anode, with a preferential oxidation to (Z)-3-(2-propynoxy)-2-propenoic acid with high Ni-loading, and to propiolic acid with low loading of active Ni sites. Moreover, the formation of (E)-3-(2-propynoxy)-2-propenoic acid was discriminatory irrespective of the experimental conditions and Ni loadings on the carbon matrixes. *Corresponding author. Tel/Fax: +34 965903629/ +34 965903537. E-mail address: [email protected] (V. Montiel)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Core–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol

Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...

متن کامل

Ni@Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media

Core-shell nanostructures are emerging as more important materials than alloy nanostructures and have much more interesting potential applications in various fields. In this work, we demonstrated the fast and facile synthesis of core-shell nanoparticles consisting of Pt thin layer as the shell and Ni nanoparticles as the cores. The described method herein is suitable for large-scale and low-cos...

متن کامل

Synthesis of Monodispersed Pt-Ni Alloy Nanodendrites and Their Electrochemical Properties

Structure-controlled Pt-based catalysts have been known to exhibit improved electrocatalytic activities due to particularly modulated surface structures favorable for alcohol electrooxidation. We report PtNi alloy dendrite structure for formic acid electrooxidation prepared by a thermal decomposition method. The Pt-Ni nanodendrites display 3-dimentional nanostructure and homogeneous alloy forma...

متن کامل

Synthesis and Characterization of Nano Structured Pd-Ni and Pd-Ni-C Composites Towards Electrooxidation of Alcohols

Nanostructured (100-x)% Pd -x % Ni (x = 1, 2, 5, 10, and 20) and (90 – y)%Pd-10%Ni-y%C (y = 0.5, 1, 2, 5, and 10) composite films are obtained on glassy carbon electrodes and characterized by XRD, TEM, cyclic voltammetry and chronoamperometric techniques for use as electrocatalysts towards methanol, ethanol, ethylene glycol and glycerol oxidations in 1 M KOH at 25°C. Results show that addition ...

متن کامل

Effects of adsorption and confinement on nanoporous electrochemistry.

Characteristic molecular dynamics of reactant molecules confined in the space of the nanometer scale augments the frequency of collisions with the electrified surface so that a given faradaic reaction can be enhanced at nanoporous electrodes, the so-called nano-confinement effect. Since this effect is grounded on diffusion inside nanopores, it is predicted that adsorption onto the surface will ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014